Resistencia

Revisa la pestaña y encuentra información.

Aprendamos Juntos cada día

Opina y aporta sobre todos los temas.

domingo, 15 de junio de 2014

Física Eléctrica Vídeo Teoría + Ejercicio.





Disfruten de nuestro vídeo esperemos les sea de ayuda.
Comenten...

Gliffy una útil herramienta de la web 2.0



Gliffy es una herramienta de gráfico y diseño, ella nos permite realizar mapas mentales, mapas conceptuales, esquemas grandes y profesionales de manera rápida, permite al usuario ser lo mas creativo que desee con términos de color, diseño y claro información para lograr que su esquema cumpla con todos los requisitos que se le solicite.
No hay necesidad de comprar software de escritorio, ni descargar programas o algo parecido solo es necesario tener acceso a la red.

¿Porque usar Gliffy? Facilita ordenar la información, llevarla directamente a un esquema para la utilización de este en diferentes actividades escolares. Esta herramienta es muy fácil de usar, por lo que a los niños de primaria les seria ideal para el momento de enseñarlos a usar el ordenador para hacer sus tareas.



NOTA: Gliffy se encuentra en ingles pero tiene un tutorial de paso a seguir cuando lo comienzas a usar que es muy sencillo de entender, lo puedes comparar a cuando ordenas autoformas en power point.
Para salvar tus esquemas debes crear una cuenta.

Link de la herramienta: http://www.gliffy.com/

CORTOCIRCUITO

        Si por casualidad en un circuito eléctrico unimos o se unen accidentalmente los extremos o cualquier parte metálica de dos conductores de diferente polaridad que hayan perdido su recubrimiento aislante, la resistencia en el circuito se anula y el equilibrio que proporciona la Ley de Ohm se pierde.
El resultado se traduce en una elevación brusca de la intensidad de la corriente, un incremento violentamente excesivo de calor en el cable y la producción de lo que se denomina “cortocircuito”.
     La temperatura que produce el incremento de la intensidad de corriente en ampere cuando ocurre un cortocircuito es tan grande que puede llegar a derretir el forro aislante de los cables o conductores, quemar el dispositivo o equipo de que se trate si éste se produce en su interior, o llegar, incluso, a producir un incendio.


    Cortocircuito producido por la unión accidental de dos< cables o conductores de polaridades diferentes.


LEYES DE KIRCHHOFF




         ¿En qué se basan las leyes de Kirchhoff?
       Las leyes de Kirchhoff son dos igualdades que se basan en la conservación de la energía y la carga en los circuitos eléctricos. Fueron descritas por primera vez en 1845 por Gustav Kirchhoff. Son ampliamente usadas en ingeniería eléctrica.
Ambas leyes de circuitos pueden derivarse directamente de las ecuaciones de Maxwell, pero Kirchhoff precedió a Maxwell y gracias a Georg Ohm su trabajo fue generalizado. Estas leyes son muy utilizadas en ingeniería eléctrica para hallar corrientes y tensiones en cualquier punto de un circuito eléctrico.

Ley de corrientes.
      Esta ley también es llamada ley de nodos o primera ley de Kirchhoff y es común que se use la sigla LCK para referirse a esta ley. La ley de corrientes de Kirchhoff nos dice que:
En cualquier nodo, la suma de la corriente que entra en ese nodo es igual a la suma de la corriente que sale. De igual forma, La suma algebraica de todas las corrientes que pasan por el nodo es igual a cero.

Ley de Kirchhoff.

      La ley se basa en el principio de la conservación de la carga donde la carga en couloumbs es el producto de la corriente en amperios y el tiempo en segundos.

Ley de tensiones.

         Esta ley es llamada también Segunda ley de Kirchhoff, ley de lazos de Kirchhoff y es común que se use la sigla LVK para referirse a esta ley.
En toda malla la suma de todas las caídas de tensión es igual a la tensión total suministrada. De forma equivalente, En toda malla la suma algebraica de las diferencias de potencial eléctrico es igual a cero.

leyes

nodos

REDES ELÉCTRICAS

       Se denomina red eléctrica al conjunto de medios formado por generadores eléctricos, transformadores, líneas de transmisión y líneas de distribución utilizados para llevar la energía eléctrica a los elementos de consumo de los usuarios.
Con este fin se usan diferentes tensiones para limitar la caída de tensión en las líneas. Usualmente las más altas tensiones se usan en distancias más largas y mayores potencias. Para utilizar la energía eléctrica las tensiones se reducen a medida que se acerca a las instalaciones del usuario. Para ello se usan 
los transformadores eléctricos.


CIRCUITOS ELÉCTRICOS




        Un circuito eléctrico es el trayecto o ruta de una corriente eléctrica. El término se utiliza principalmente para definir un trayecto continuo compuesto por conductores y dispositivos conductores, que incluye una fuente de fuerza electromotriz que transporta la corriente por el circuito (Figura 2). Un circuito de este tipo se denomina circuito cerrado, y aquéllos en los que el trayecto no es continuo se denominan abiertos. Un cortocircuito es un circuito en el que se efectúa una conexión directa, sin resistencia, inductancia ni capacitancia apreciables, entre los terminales de la fuente de fuerza electromotriz.

PRINCIPIO DE FUNCIONAMIENTO DE UN MOTOR ELÉCTRICO

            Los motores eléctricos son dispositivos que transforman energía eléctrica en energía mecánica. El medio de esta transformación de energía en los motores eléctricos es el campo magnético. Existen diferentes tipos de motores eléctricos y cada tipo tiene distintos componentes cuya estructura determina la interacción de los flujos eléctricos y magnéticos que originan la fuerza o par de torsión del motor.
El principio fundamental que describe cómo es que se origina una fuerza por la interacción de en una carga eléctrica puntual q en campos eléctricos y magnéticos es la Ley de Lorentz
F = q(E + v  x B)
Donde:
q-carga eléctrica puntual
E-Campo eléctrico
v-velocidad de la partícula
B-densidad de campo magnético
En el caso de un campo puramente eléctrico la expresión de la ecuación se reduce a:
F = qE
La fuerza en este caso está determinada solamente por la carga q y por el campo eléctrico E. Es la fuerza de Coulomb que actúa a lo largo del conductor originando el flujo eléctrico, por ejemplo en las bobinas del estátor de las máquinas de inducción o en el rotor de los motores de corriente continua.
En el caso de un campo puramente magnético:
F = q(v x B)
La fuerza esta determinada por la carga, la densidad del campo magnético B y la velocidad de la carga V . Esta fuerza es perpendicular al campo magnético y a la dirección de la velocidad de la carga. Normalmente hay muchísimas cargas en movimiento por lo que conviene reescribir la expresión en términos de densidad de carga P y se obtiene entonces densidad de fuerza Fv (fuerza por unidad de volumen):
F = p(E + v x B)
Al producto pv se le conoce como densidad de corriente J (amperes por metro cuadrado):
J = pv
Entonces la expresión resultante describe la fuerza producida por la interacción de corriente con campo magnético:
Fv = B
Este es un principio básico que explica cómo se origina las fuerzas en sistemas electromecánicos como los motores eléctricos. Sin embargo, la completa descripción para cada tipo de motor eléctrico depende de sus componentes y su construcción.


CAMPO MAGNÉTICO



         Se trata de un campo que ejerce fuerzas (denominadas magnéticas) sobre los materiales. Al igual que el campo eléctrico también es un campo vectorial, pero que no produce ningún efecto sobre cargas en reposo (como sí lo hace el campo eléctrico en dónde las acelera a través de la fuerza eléctrica). Sin embargo el campo magnético tiene influencia sobre cargas eléctricas en movimiento.
                 Si una carga en movimiento atraviesa un campo magnético, la misma sufre la acción de una fuerza (denominada fuerza magnética). Esta fuerza no modifica el módulo de la velocidad pero sí la trayectoria (ver fuerza magnética). Sobre un conductor por el cual circula electricidad y que se encuentra en un campo también aparece una fuerza magnética.
El campo magnético está presente el los imanes. Por otro lado, una corriente eléctrica también genera un campo magnético.

               El campo magnético se denomina con la letra B y se mide en Tesla.

LEY DE JOULE

      La ley de la conservación de la energía afirma que la energía no puede crearse ni destruirse, sólo se puede cambiar de una forma a otra.
Al circular una corriente eléctrica a través de un conductor el movimiento de los electrones dentro del mismo produce choques con los átomos del conductor cuando adquieren velocidad constante, lo que hace que parte de la energía cinética de los electrones se convierta en calor, con un consiguiente aumento en la temperatura del conductor. Mientras más corriente fluya mayor será el aumento de la energía térmica del conductor y por consiguiente mayor será el calor liberado. A este fenómeno se le conoce como efecto joule. 
      El calor producido por la corriente eléctrica que fluye través de un conductor es una medida del trabajo hecho por la corriente venciendo la resistencia del conductor; la energía requerida para este trabajo es suministrada por una fuente, mientras más calor produzca mayor será el trabajo hecho por la corriente y por consiguiente mayor será la energía suministrada por la fuente; entonces, determinando cuanto calor se produce se puede determinar cuanta energía suministra la fuente y viceversa.

        El calor generado por este efecto se puede calcular mediante la ley de joule que dice que:
 “La cantidad de calor que desarrolla una corriente eléctrica al pasar por un conductor es directamente proporcional a la resistencia, al cuadrado de la intensidad de la corriente y el tiempo que dura la corriente”.
Expresado como fórmula tenemos:

Donde:
W = Cantidad de calor, en Joules
I = Intensidad de la corriente, en Amperes
R = Resistencia eléctrica, en Ohms
T = Tiempo de duración que fluye la corriente, en segundos
Lo que equivale a la ecuación para la energía eléctrica, ya que la causa del efecto joule es precisamente una pérdida de energía manifestada en forma de calor.
Normalmente cuando el trabajo eléctrico se manifiesta en forma de calor se suele usar la caloría como unidad. El número de calorías es fácil de calcular sabiendo que:
1 joule = 0,24 calorias (equivalente calorífico del trabajo)
1 caloria = 4,18 joules (equivalente mecánico del calor)

      Por lo que la ley de joule queda expresada como:




ENERGÍA ELÉCTRICA

         Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos cuando se los pone en contacto por medio de un conductor eléctrico. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía lumínica o luz, la energía mecánica y la energía térmica.

POTENCIA ELÉCTRICA


       Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”.

        Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica.

        La unidad de medida de la potencia eléctrica “P” es el “watt”, y se representa con la letra “W”.



LEY DE OHM

La ley de Ohm dice que: "la intensidad de la corriente eléctrica que circula por un conductor eléctrico es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo".


En el Sistema internacional de unidades:
I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V)
R = Resistencia en ohmios (Ω)

FUERZA ELECTROMOTRIZ

     La fuerza electromotriz (FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor   cuya circulación,  , define la fuerza electromotriz del generador.
      Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.

       Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).
         La FEM se mide en voltios, al igual que el potencial eléctrico.



DEPENDENCIA ENTRA LA RESISTENCIA Y LA TEMPERATURA


       Sabemos que la resistencia en conductores metálicos es producto de choques de los portadores de cargas con los obstáculos que encuentran en su camino. Al chocar pierden velocidad y energía pero el campo eléctrico les hace recuperar esa velocidad. Esa energía del campo, gastada en lograr que los portadores de carga recuperen su energía hace que el conductor aumente su temperatura.
Si llamamos R1 a la resistencia del conductor a la temperatura T1 r R2 la resistencia de la temperatura T2, se tendrá que la variación de la resistencia R2 - R1 se debe a la relación de temperatura. Ésta variación de resistencia, producto de la variación de temperatura es proporcional a la variación inicial, pudiéndose escribir:
R2 - R1 =

. R1 (T2 - T1)

Si llamamos "t a la variación de temperatura podemos escribir:
R2 - R1 =

. R1"t

Donde:
R2: Resistencia final
R1: Resistencia inicial

: coeficiente de temperatura (ºC-1)

T2: Temperatura final

T1: Temperatura inicial

FACTORES DE LOS CUALES DEPENDE LA RESISTENCIA DE UN CONDUCTOR



Desde la época de Ohm hasta nuestros días, se han venido haciendo experimentos con el objeto de conocer la mayor o menor capacidad de los materiales para conducir electricidad. Los resultados obtenidos a través de esos experimentos han conducido a decir que el valor de la resistencia de un conductor depende de la longitud, el área de la sección y el material del cual esta fabricado.
De acuerdo a todo esto podemos escribir que:
·         La resistencia R del conductor es directamente proporcional a la longitud L.
·         La resistencia es inversamente proporcional al área A del conductor.
·         La resistencia depende del material del conductor a través de una constante que designaremos con la letra ro (p) y que llamaremos resistividad o resistencia especifica.
R = p. L / A
R: es la resistencia del conductor
P: es la resistividad o resistencia especifica

A: es el área o sección del conductor

RESISTENCIA ELÉCTRICA

Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.



A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.

B.- Electrones fluyendo por un mal conductor.eléctrico, que ofrece alta resistencia a su paso. En ese caso los electrones chocan unos contra otros al no poder circular libremente y, como consecuencia, generan calor.

Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso. Mientras menor sea esa resistencia, mayor será el orden existente en el micromundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor. Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.

AMPERIMETRO Y VOLTÍMETRO

Voltímetro: Un voltímetro es aquel aparato o dispositivo que se utiliza a fin de medir, de manera directa o indirecta, la diferencia potencial entre dos puntos de un circuito eléctrico. Se usa tanto por los especialistas y reparadores de artefactos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general, dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.

        Los voltímetros, en esencia, están constituidos de un galvanómetro sensible que se conecta en serie a una resistencia extra de mayor valor. A fin de que durante el proceso de medición no se modifique la diferencia de potencial, lo mejor es intentar que el voltímetro utilice la menor cantidad de electricidad posible. Lo anterior es posible de regular con un voltímetro electrónico, el que cuenta con un circuito electrónico con un adaptador de impedancia.

CONDUCTIVIDAD ELÉCTRICA

Es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales. La conductividad es la inversa de la resistividad, por tanto, y su unidad es el S/m (siemens por metro). 

CORRIENTE ALTERNA

      Este tipo de corriente es producida por los alternadores y es la que se genera en las centrales eléctricas. La corriente que usamos en las viviendas es corriente alterna (enchufes).En este tipo de corriente la intensidad varia con el tiempo (numero de electrones), además cambia de sentido de circulación a razón de 50 veces por segundo (frecuencia 50Hz). Según esto también la tensión generada entre los dos bornes (polos) varía con el tiempo en forma de onda senoidal (ver gráfica), no es constante.

       Esta onda senoidal se genera 50 veces cada segundo. Es tan rápido cuando no hay tensión que los receptores no lo aprecian y no se nota, excepto los fluorescentes (efecto estroboscópico). Además vemos como a los 10ms (milisegundos) la dirección cambia y se invierten los polos, ahora llega a una tensión máxima de -325V (tensión negativa).
        Esta onda se conoce como onda alterna senoidal y es la más común ya que es la que tenemos en nuestras casas. La onda de la intensidad sería de igual forma pero con los valores de la intensidad lógicamente, en lugar de los de la tensión.

CORRIENTE CONTINUA

      La corriente continua la producen las baterías, las pilas y las dinamos. Entre los extremos de cualquiera de estos generadores se genera una tensión constante que no varia con el tiempo, por ejemplo si la pila es de 12 voltios, todo los receptores que se conecten a la pila estarán siempre a 12 voltios (a no ser que la pila este gastada y tenga menos tensión). Además de estar todos los receptores a la tensión de la pila, al conectar el receptor (una lámpara por ejemplo) la corriente que circula por el circuito es siempre constante (mismo número de electrones) , y no varia de dirección de circulación, siempre va en la misma dirección, es por eso que siempre el polo + y el negativo son siempre los mismos.

INTENSIDAD DE CORRIENTE

     Esta se denomina como la carga eléctrica que pasa a través de una sección del conductor en la unidad de tiempo. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios partido por segundo), unidad que se denomina amperio.
    Si la intensidad es constante en el tiempo se dice que la corriente es continua; en caso contrario, se llama variable. Si no se produce almacenamiento ni disminución de carga en ningún punto del conductor, la corriente es estacionaria.
Se mide con un galvanómetro que, calibrado en amperios, se llama amperímetro y en el circuito se coloca en serie con el conductor cuya intensidad se desee medir.

Nota: Si la intensidad permanece constante, en cuyo caso se denota I, utilizando incrementos finitos de tiempo.

Corriente Eléctrica

La corriente eléctrica es el flujo de portadores de carga eléctrica, normalmente a través de un cable metálico o cualquier otro conductor eléctrico, debido a la diferencia de potencial creada por un generador de corriente. La ecuación que la describe en electromagnetismo, en donde es la densidad de corriente de conducción y es el vector perpendicular al diferencial de superficie o es el vector unitario normal a la superficie y dS es el diferencial de superficie.



Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó el sentido convencional de circulación de la corriente como un flujo de cargas desde el polo positivo al negativo. Sin embargo posteriormente se observó, gracias al efecto Hall, que en los metales los portadores de carga son negativas, estos son los electrones, los cuales fluyen en sentido contrario al convencional. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético.
 En el Sistema Internacional de Unidades, la unidad de medida de la intensidad de corriente eléctrica es el amperio, representado con el símbolo A. El aparato utilizado para medir corrientes eléctricas pequeñas es el galvanómetro. Cuando la intensidad a medir supera el límite de los galvanómetros se utiliza el amperímetro.